Delphi - база знаний

         

Основы 3D математики - Векторные и матричные преобразования


Основы 3D математики - Векторные и матричные преобразования




Векторы


Вектор - направленный отрезок, имеющий направление и длину. Векторы обозначаются так: a = (x,y,z), например, b = (0,1,-2). Еще одно представление вектора : AB = (x,y,z).

AB= (x,y,z) = (bx-ax,by-ay,bz-az),

где A и B - 2 точки, A(ax,ay,az) и B(bx,by,bz), A - начало вектора, B - конец вектора.



Длина вектора

Длина вектора, |a|, считается так:

|a| = sqrt(ax2+ay2+az2).

Сложение векторов.

a + b = c;
a + b = (ax + bx, ay + by, az + bz).

т. е. как результат мы получаем вектор.

Вычитание векторов.

c - a = b;
c - a = (cx - ax, cy - ay, cz - az).

как результат - также мы получаем вектор.

Cкалярное произведение векторов.(dot)

Скалярное произведение 2х векторов - произведение длин 2х векторов на cos угла между ними. Скалярное произведение векторов - это длина проекции вектора a на вектор b.

a . b = |a| |b| cos ?;
или
a . b = axbx + ayby + azbz; 

Следствие: ? - угол между двумя векторами: cos ? = a . b / (|a| |b|);

Проекция одного вектора на другой.

Для того, чтобы вычислить проекцию вектора b на вектор а требуется просто произвести скалярное умножение этих векторов, а затем получить произведение получившегося результата на вектор b. Обозначим искомый вектор как c. тогда:

c = (a . b) b;

фактически, мы находим длину проекции и, умножая ее на вектор, проекцию которого мы нашли, маштабируем его до нужного размера.

Умножение вектора на вектор.(cross)

Умножая вектор a на вектор b, мы получим вектор, перпендикулярный плоскости, которую определяют вектора a и b.

a x b = ( aybz - byaz , azbx - bzax , axby - bxay );

фактически, таким образом находиться вектор нормали к полигонам.

Матрицы


Здесь я постарался вкратце изложить то, что мы будем делать с матрицами.
скалярное произведение векторов:

[ a ] [ d ] 
[ b ] * [ f ] = a*d + b*f + c*g
[ c ] [ g ]

Векторное произведение:

[ a ] [ d ] [ b*f - c*e ]
AxB = [ b ] x [ e ] = [ c*d - a*f ]
[ c ] [ f ] [ a*e - b*d ]

Сложение матриц:

[ 1 2 3 ] [ 10 11 12 ] [ 1+10 2+11 3+12 ]
[ 4 5 6 ] + [ 13 14 15 ] = [ 4+13 5+14 6+15 ]
[ 7 8 9 ] [ 16 17 18 ] [ 7+16 8+17 9+18 ]

Умножение матриц:

[ 1 2 3 ] [ 10 11 12 ] [ 1*10+2*13+3*16 1*11+2*14+3*17 1*12+2*15+3*18 ]
[ 4 5 6 ] * [ 13 14 15 ] = [ 4*10+5*13+6*16 4*11+5*14+6*17 4*12+5*15+6*18 ]
[ 7 8 9 ] [ 16 17 18 ] [ 7*10+8*13+9*16 7*11+8*14+9*17 7*12+8*15+9*18 ]

Очень важным является тот факт, что (A*B)*С = A*(B*C)

Векторные и матричные преобразования


Параллельный перенос:
Переносим точку (x,y,z) на вектор (dx,dy,dz), в результате получим точку с координатами (x+dx, y+dy, z+dz);

Поворот:
Поворачиваем точку (x,y) на угол ? :

x'= x cos ? - y*sin ?
y' = x sin ? + y*cos ?

для трехмерного случая - аналогично для каждой плоскости.
ясно, что если нам потребуется (а нам потребуется :) ) проводить для каждой точки в пространстве параллельный перенос + поворот в пространстве, то придеться сделать огромное количество преобразований.
можно построить матрицы преобразований, помножив точку - вектор на которую, мы получим результат - координаты искомой точки.

матрица параллельного переноса:

[ 1 0 0 0 ]
[ 0 1 0 0 ]
[ 0 0 1 0 ]
[ x y z 1 ]

матрица растяжения/сжатия:

[ z 0 0 0 ]
[ 0 y 0 0 ]
[ 0 0 x 0 ]
[ 0 0 0 1 ]

матрица поворота вокруг оси x:

[ 0 0 0 0 ]
[ 0 cos ? sin ? 0 ]
[ 0 -sin ? cos ? 0 ]
[ 0 0 0 1 ]

матрица поворота вокруг оси y:

[ cos ? 0 -sin ? 0 ]
[ 0 1 0 0 ]
[ sin ? 0 cos ? 0 ]
[ 0 0 0 1 ]

матрица поворота вокруг оси z:

[ cos ? sin ? 0 0 ]
[-sin ? cos ? 0 0 ]
[ 0 0 1 0 ]
[ 0 0 0 1 ]

теперь - зачем нужны матрицы в 3D-програмировании, если можно все сделать с помощью векторов, и если, например, поворот точки с помощью векторов занимает меньше операций, чем используя матрицы.

например, мы отодвигаем камеру и поворачиваем ее. для этого требуется произвести серию операций (переносов, поворотов) с точками (вершинами полигонов) в 3D-сцене. т.е. для каждой точки произвести сначала параллельный перенос, а затем - повороты по всем осям. при использовании векторов мы просто проведем все эти операции отдельно для каждой точки... что весьма ресурсоемко. или - матричные параллельные переносы, повороты.... еще более ресурсоемко, но вспомним:

(A*B)*C = A*(B*C)

для матриц.. а нам требуется провести такие преобразования: a*A*B*C*D, где - а-точка-вектор, над которым требуется произвести действия, а A,B,C,D - матрицы переноса и поворотов. Мы вполне можем не последовательно умножать точку-вектор a на матрицы переносов, а сначала перемножить эти матрицы, а затем просто умножать получившуюся матрицу на каждую точку, которую требуется сместить - перемножение 4х матриц, а затем умножение 1 вектора на 1 матрицу на каждую точку по сравнению с подвержением каждой точки векторным преобразованиям - весьма и весьма значительное сокращение производимых операций.

Взято с





Содержание раздела